LUMEL

TEMPERATURE CONTROLLER **RE55**

USER'S MANUAL

CONTENTS

1.	APPLICATION	5
2.	CONTROLLER SET	5
3.	CONTROLLER PREPARATION to WORK	5
	3.1. Safety	5
	3.2. Controller installation in the panel	6
	3.3. Electrical connection	7
	3.4. Installation recommendations	8
4.	WORK STARTING	9
	4.1.Kind of execution	9
	4.2. Controller service	10
	4.3. Setting of setpoint value	11
5.	PROGRAMMING of ONTROLLER PARAMETERS	
	- CONFIGURABLE EXECUTION	11
	5.1. Scheme of the controller menu	11
	5.2. Setting change	15
	5.3. List of parameters	16
6.	CONTROLLER INPUTS and OUTPUTS	20
	6.1. Measuring input	20
_	6.2. Output	20
7.	CONTROL	21
	7.1. ON-OFF control	21
8.	ALARMS - CONFIGURABLE EXECUTION	23
9.	MANUFACTURER'S SETTINGS	
	- CONFIGURABLE EXECUTION	24
10.	SELECTION of PID PARAMETER SETTINGS	
	- CONFIGURABLE EXECUTION	24
	10.1. Autotuning	24
	10.2. Correction of PID settings	
11.	ERROR SIGNALLING	29
12.	TECHNICAL DATA	31
13.	CONTROLLER EXECUTION CODES	35
14.	MAINTENANCE and GUARANTEE	36

1. APPLICATION

The R55 controller is a microprocessor controller with an analog setting and digital measurement of the measured value. The controller controls the temperature in objects through switching on and off the electrical control device, in accordance with the definite set point by the controller. The controller co-operates directly with RTD and TC temperature sensors

The controller is destined to control temperature in plastics industry, food and dehydration industries, and everywhere when it is necessary to stabilize temperature changes.

2. CONTROLLER SET

The controller set is composed of:

1. controller	1	рс
2. plug with 16 screw terminals	1	рс
3. holder to fix in the panel	2	pcs

When unpacking the controller, please check whether the type and option code on the data plate correspond to the order.

3. CONTROLLER PREPARATION to WORK

3.1. Safety

The RE55 controller meets requirements concerning the safety of electrical measuring devices in automatics acc. to the EN 61010-1 standard, requirements concerning the immunity against electromagnetic interference acc. to the

EN 61000-6-2 standard and the emission of electromagnetic interference occurring in industrial environments, acc. to the EN 61000-6-4 standard.

When connecting the supply, one must remember that a switch or a circuit-breaker should be installed in the building. This switch should be located near the device, easy accessible by the operator, and marked as an element switching the device.

3.2. Controller Installation in the panel

Fix the controller in the panel by means of two screw holders included in the standard accessory set, acc. to the fig. 1. The panel hole should be $91^{+0.6} \times 91^{+0.6}$ mm. The thickness of the material which the panel is made of, cannot exceed 6 mm.

Fig. 1. Way of controller fixing.

Controller overall dimensions are presented below, on the fig. 2.

Fig.2. Overall dimensions of the RE55 controller.

3.3. Electrical connections

Carry out electrical connections in compliance with the fig. 3.

Fig. 3. Scheme of electrical connections.

Note:

- 1. When connecting the Pt100 sensor in two-wire version, one must short terminals 1 and 2.
- 2. One cannot connect any wires to not used controller terminals.

3.4. Installation recommendations

The RE55 controller fulfils requirements concerning immunity against electromagnetic interference in industrial environments acc. to binding standards.

In order to obtain a full fastness of the controller against electromagnetic interference in an unknown environment interference level, it is recommended to observe following principles:

- do not supply the controller from the network near devices generating high impulse interference,
- apply network filters,
- apply metallic shields in the shape of tubes or braided screens to conduct supplying wires,
- wires supplying the measuring signals should be twisted in pairs, and for resistance thermometers in a 3-wire connection, twisted with wires of the same length, cross-section and resistance, and led in a shield as above,
- all screens should be one-side earthed, and led the nearest possible to the controller,
- apply the general principle that wires leading different signals should be led the farthest possible between them (not less than 30 cm), and their crossing executed at a right angle.

4. WORK STARTING

After the correct installation and supply connection, the controller carries out the display test and displays the type of controller on the upper display inscription - E55, the program version and next, the measured value.

A character message informing about abnormalities may appear on the display (table 4).

4.1. Kind of execution

The controller is available in following executions:

ON-OFF controller

- analog setting of the set point and digital measurement of the measured value,
- control algorithm of on-off type with hysteresis set on 0.7% of the measuring range.

PID controller

- analog setting of the set point and digital measurement of the measured value,
- control algorithm of PID type with manufacturer's setting depending on the execution (see table 1).

Configurable controller

- analog setting of the set point and digital measurement of the measured value,
- -controlalgorithmofon-offorPIDtypeandparameterssetby the user,
- programming of controller parameters by means of and repush-buttons,
- autotuning function,

- alarm output,
- programmable change of control between heating and cooling,
- possible safe-guard of parameters through a password.

4.2. Controller service

The view of the frontal controller plate in the on-off or PID execution is presented on the fig.4a, and in the configurable execution with push-buttons and the alarm, on the fig.4b.

Fig. 4. Frontal plate of the controller.

Following elements are situated on the frontal plate of the controller:

- 1 display of the measured value,
- 2, 3 hand-setting knob with the indicating dial to set the set point value,
- 4 green diode signalling the output state,
- 5 red diode signalling the alarm state,
- 6, 7 push-buttons.

10

4.3. Setting of the set point value

The setting of the set point is carried out after pressing the internal part to the external part of the hand-setting knob. The controller displays automatically the set point value in case of the potentiometer movement. The return to display the measured value follows after 5 seconds since the potentiometer movement steady-state. In the controller version with push-buttons, the monitoring of the set point is possible after pressing the end push-button. During the display of the set point, the display pulsates.

5. PROGRAMMING of CONTROLLER PARAME-TERS - CONFIGURABLE EXECUTION

5.1. Scheme of the controller menu

The scheme of the controller menu is presented on the fig.5. After pressing and holding down the \frown push-button during at least 2 seconds, it is possible to program parameters. The transition between parameters is carried out by means of the \frown push-button. The description of parameters is contained in the table 1. The return to the normal working mode follows after the simultaneous pressure of \frown and \leftarrow push-buttons or automatically after 30 seconds since the last push-button pressure.

Some parameters may be invisible. It depends on the current controller configuration.

Fig. 5. Menu of the controller service.

One can protect by a code the access to parameters. If the parameter is set (the $5\mathcal{E}\mathcal{E}U$ parameter is higher than zero), one must give it during the entry to the menu. First, the inscription $cod\mathcal{E}$ appears and after the release of the push-button, one can introduce the code value. If an incorrect code value will be introduced, the inscription $\mathcal{E} \circ \mathcal{C}$ appears on the display and the user will be able only to review parameter values. The introduction of the safety code is shown on the fig.6.

14

5.2. Setting change

The change of the parameter setting begins after pressing the <u>upsh-button</u>. By means of the <u>push-button</u> one can increase the flickering digit or the non-numerical parameter, and by the <u>upsh-button</u>, one can transit between digits or accept the non-numerical parameter. The change cancellation follows after the simultaneous pressure of <u>a</u> and <u>upsh-buttons</u>, or automatically after the laps of 30 sec. since the last push-button pressure.

The way to change the setting is shown on the fig. 7.

Fig. 7 . Setting change of numerical and textual parameters. 15

5.3. List of parameters

The list of controller parameters is presented in the table 1.

List of configuration parameters

Table 1

Parameter symbol	Parameter descrip- tions	Range of parameters changes	Manufactu- rer's setting
RL G	Controller algorythm	o הס ^F : on-off control algorythm ואסי ל: PID control algorythm	onof ⁶⁾ P. d ^{.7)}
РЬ	Proportio- nal band ¹⁾	0.1999.9 °C	PB FABR acc. to table 2
٤,	Integration time- constant ¹⁾	09999 s (0 - unit disabled)	300
೯٩	Differentia- tion time- constant ¹⁾	0.0999.9 s (0 - unit disabled)	60.0
٤٥	Pulse repetition period ¹⁾	0.599.9 s	20.0
ну	Hystere- sis ²⁾	0.299.9 °C	HY MANUF acc. table 2

002	Configu- ration of the control output	dir c: control of cooling type i cu: control of heating type	1 00
RLEY	Configu- ration of the alarm output	איז : absolute upper alarm ג' ס: absolute upper alarm ליל : absolute lower alarm ליל : relative upper alarm ליני ס: relative lower alarm ליני ס: absolute internal alarm ליסטי: absolute external alarm	nonE
RL.SP	Alarm set value ³⁾	MINMAX acc. to table 2	0
RL.du	Deviation of the set value for the relative alarm ³⁾	-199.9199.9 °C	0.0
8L.HY	Hysteresis for the alarm ³⁾	0.299.9 °C	2.0
5h .F	Shift of the measured value	-99.999.9 °C	0.0

dP	Position of the decimal point for the measured value ⁴⁾	0. dP: without deci- mal point 1. dP: 1 decimal place	DP MANUF acc. table 2
SECU	Safety code ⁵⁾	09999	0

- ¹⁾ parameter hidden at on-off control,
- ²⁾ parameter hidden at proportional control,
- ³⁾ parameter visible when there is an appropriate configuration of the input alarm,
- ⁴⁾ only for executions with resolution 0.1 (see table 5),
- ⁵⁾ parameter hidden in the mode of parameter review and only for readout,
- ⁶⁾ for the execution, in execution code: on-off controller and configurable controller,
- ⁷⁾ for the execution, in execution code: PID controller.

Parameters depending on the measuring range

Table 2

Sensor	MIN	MAX	PB FABR	HY FABR	DP FABR
RTD Pt100 - 50100°C	-50,0	100,0	15,0	1,1	I. dP
RTD Pt100 0100°C	0,0	100,0	10,0	0,7	I_dP
RTD Pt100 0150°C	0,0	150,0	15,0	1,1	l_dP
RTD Pt100 0250°C	0,0	250,0	20,0	1,8	l_dP
RTD Pt100 0400°C	0,0	400,0	25,0	2,8	i_dP
RTD Pt100 0600°C	0,0	600,0	30,0	4,2	I.dP
TC of J type 0250°C	0,0	250,0	20,0	1,8	I.dP
TC of J type 0400°C	0,0	400,0	25,0	2,8	I.dP
TC of J type 0600°C	0,0	600,0	30,0	4,2	l_dP
TC of J type 0900°C	0,0	900,0	40,0	6,3	l_dP
TC of K type 0600°C	0,0	600,0	30,0	4,2	l_dP
TC of K type 0900°C	0,0	900,0	40,0	6,3	I.dP
TC of K type 01300°C	0	1300	45,0	9,1	0.dP
TC of S type 01600°C	0	1600	50,0	11,2	0.dP

6. CONTROLLER INPUTS and OUTPUTS

6.1. Measuring inputs

The controller has one measuring input to which, one can connect a resistance thermometer or thermocouple sensor acc. to the execution code. for the resistance thermometer Pt100 in a three-wire connection, the compensation of the line resistance is carried out automatically.

In the two-wire connection, one can take into consideration that the line resistance introduces an additional measurement error. For thermocouples, the compensation of the reference junction is carried out automatically. An additional parameter is the number of digits after the decimal point, parameter **d**^P which defines if the measured temperature is to be shown with a place after the decimal point (only for execution with resolution 0.1°C).

The correction of the measured value indication is carried out by the h F parameter.

6.2. Output

The controller has one control output. On this output, it is possible to select the on-off control or proportional PID control. For the proportional control, one must additionally set the pulse repetition period.

The pulse repetition period is the time which go by, between successive switching of the output on during the proportional control.

The length of the pulse repetition period must

he chosen dependina on dvnamic properobject and suitably to the ties of the actuator It is recommended to use solid-state relays (SSR) for quick processes. The relay output is used to control contactors in slow-speed processes. The use of a too high pulse repetition period to control high-speed processes may give undesirable effects in the shape of oscillations. Theoretically, the lower pulse repetition period, the better control is, however for the relay output it should be as high as possible in order to lengthen the relay life.

Recommendations concerning the pulse repetition period

Table 3

Output	Pulse repetition period to	Load
Electromagne-	recommended >20s min. 10 s	2A/230V a.c. or contactor
tic relay	min. 5 s	1A/230V a.c.
Transistor output	13 s	solid-state relay (SSR)

7. CONTROL

7.1. On-off control (ON-OFF)

The choice of the on-off control type requires following settings, the **RL** L parameter must be set on **onoF**, the hysteresis value given in the parameter - **H**H, and the way of the output operation established by the parameter - **out**. The operation way of the output on heating (fig.8) is set by the parameter out = nu, and on cooling by the parameter out = dr c.

Fig.8. Operation way of the output heating type.

7.2. PID control

The choice of the PID or also PI, PD or P control type requires following settings, the **R**L L parameter must be set on **P**, **d**, and suitably set parameter values - proportional range (**Pb**), integrating unit (L,) and differentiating unit (L**d**). The switching of the given unit off consists on setting the parameter on zero. The operation way of the output on heating is chosen by setting the **out** = **inu**, parameter, and on cooling by setting the parameter **out** = **d**, **r**. The next parameter to set, is the pulse repetition period (L**o**).

8. ALARMS - CONFIGURABLE EXECUTION

Fig.9. Kinds of alarms.

The alarm configuration requires the choice of the kind of alarm through setting the *RLLY* parameter. Accessible types of alarms are given on the fig.9. The set point value for absolute alarms is the value defined by the *RLSP* parameter, and for relative alarms, that is the deviation from the set point value in the main line - *RLdu* parameter. The alarm hysteresis, that is the zone around the set point value, in which the output state is not changed, is defined by the *RLHY* parameter.

9. MANUFACTURER'S SETTINGS - CONFIGURABLE EXECUTION

Manufacturer's settings can be restored during the supply switching on, by holding down and push-buttons till the moment, when the *FRbr* inscription appears on the upper display.

10. SELECTION of PID PARAMETER SETTINGS - CONFIGURABLE EXECUTIONS

10.1. Autotuning

The controller has the function of automatc selection of the PID setting. Obtained settings ensure in most of cases an optimal control.

To start the autotuning, one must transit to the *R*^t parameter (acc.to the fig. 5) and hold down the *push-button* during at least 2 sec.

The parameter is accessible only for the proportional control ($RLL = P_{I} d$). However it is inaccessible when giving the incorrect safety code (if it was activated).

flickering decimal point The from the left side of the display informs about the autotuning function activitv. The autotuning duration time depends on dynamic properties of the object and may lasts maximally 10 hours. During the autotuning or directly after it, over-regulations can arise, for this reason, one must set a lower set point value, if it is possible. After the autotuning termination, calculated PID settings are stored in the non-volatile memory and the control process starts with new settings.

24

The autotuning process may not start or be broken without calculation od PID settings, if:

- the measured value is higher than the set point value (for control

of heating type),

- the difference between the set point value and the measured

value is lower than 5% of the measuring range,

- the time of the preliminary object stabilization or the admissible

time of the autotuning duration will be exceeded,

- when a controller supply decay occurs,
- any push-button has been pressed,
- the set point value has been changed,
- calculated parameter values are beyond the range.

In such cases, the control with previous PID settings will start.

The controller, depending on the control deviation, chooses the response method to the unitary jump or the oscillation method. The response method to the unitary jump is chosen when the difference between the set point value and measured value is at least 20% of the controller measuring range.

Response method to the unitary jump

The autotuning by the response method to the unitary jump is composed of following stages:

- switching the control signal off and stabilization of the object temperature (since 2 min till 3 hours),
- switching the control signal on (100 %) and determination of the object characteristic (max. 10 hours),
- calculation of PID settings and their storage in the non-volatile memory,
- beginning of the PID control with new settings. 25

Fig.10. Selection of settings by the response method to the unitary jump

On the object characteristic presenting the controlled quantity in the function of time, one may see the delay time of the object to and the maximal temperature accretion (which is calculated from the dependence:

 $V_{max} = \frac{\Delta P V_{max}}{\Delta t} \quad \text{PID settings are calculated acc.}$ $V_{max} = \frac{\Delta P V_{max}}{\Delta t} \quad \text{).} \quad \begin{array}{l} \text{PID settings are calculated acc.}\\ \text{to following equations:} \\ Pb = 1.1 \cdot V_{max} \cdot T_{o} \quad \text{proportional range} \\ t_{i} = 2.4 \cdot T_{o} \quad \text{integration time-constant} \\ t_{d} = 0.4 \cdot T_{o} \quad \text{differentiation time-constant} \\ \end{array}$

Oscillation method around the set point value

The autotuning by the oscillation method is composed of following stages:

- on-off control acc. to fig.11,
- calculation of PID settings and their storage in the nonvolatile memory,
- beginning of the PID control with new settings.

Fig.11. Selection by the oscillation method.

PID settings are calculated acc. to given formula:

Pb = P
$$t_i = T$$

 $t_d = 0.25 * T$

10.2. Correction of PID settings

PID parameters interact between them and, one must introduce changes of only one parameter. The better is to match parameters, changing the value into a twice higher or twice lower value.

During changes, one must respect following principles:

a) Slow response of the object:

- decrease the proportional range,

- decrease integration and differentiation time-constants.

b) Over-regulations:

- increase the proportional range,

- increase the differentiation time.

c) Oscillations:

- increase the proportional range,
- increase the integration time,
- decrease the differentiation time.

d) Instability:

- increase the integration time.

11. ERROR SIGNALLING

Character messages

Table 4

Error code	Cause	Procedure
LErr	Exceeding of the measuring range down or shorting in the sensor circuit	Check, if the appropriate sensor was connected and if input signals are situated in the appropriate range, if yes, check if there is not a short-circuit in the sensor circuit.
HErr	Exceeding of the measuring range down or shorting in the sensor circuit	Check, if the type of the se- lected sensor is compatible with the connected sensor; check if values of input signals are situated in the appropriate range, if yes, check if there is not a break in the sensor circuit.
	Exceeding of the set value range down	Check, if the setting poten- tiometer index is not situa- ted beyond the dial range.
	Exceeding of the set value range up	Check, if the setting poten- tiometer index is not situa- ted beyond the dial range.

Rt.Er	Autotuning finished with failure	Check the cause of brea- king the tuning process in the autotuning point.
Er.Ad	Input discali- brated	Connect again the controller supply, If that not help, contact the nearest service workshop.
Er.SP	Input of the set point value discalibrated	Connect again the controller supply, If that not help, contact the nearest service workshop.
Er.EE	Error of the rea- dout verification from the non- volatile memory	Connect again the controller supply, if that not help, contact the nearest service workshop. The exploitation in this state may cause its unforeseen behaviour.

12. TECHNICAL DATA

Range, resolution and based intrinsic error for different executions Table 5

Sensor type	Range [°C]	Resolution [°C]	Intrinsic error [°C]			
Resistance t measuring ci	Resistance thermometer (acc. EN 60751+A2), measuring current 0.25 mA					
	-50100	0.1	±0.8			
	0100	0.1	±0.5			
D+100*)	0150	0.1	±0.8			
FILOU	0250	0.1	±1.3			
	0400	0.1	±2.0			
	0600	0.1	±3.0			
Thermocouple of J type (acc. EN 60584-1)						
	0250	0.1	±2.0			
Eo CuNi	0400	0.1	±2.0			
Te-Cuivi	0600	0.1	±3.0			
	0900	0.1	±4.0			
Thermocouple of K type (acc. EN 60584-1)						
	0600	0.1	±3.0			
NiCr-NiAl	0900	0.1	±4.0			
	01300	1	±6.0			
Thermocouple of S type (acc. EN 60584-1)						
PtRh10-Pt	01600	1	±8.0			

 $^{*)}$ Sensor line resistance <10 Ω /wire, one must make the connection with wires of identical cross-section and length 31

Potentiometric setting of the set point:

 resolution of the set point 	
setting	0.1% of the controller
	range
 difference between the set 	
point and the value set on	
the graduation	< 2% of the controller
	range
 detection of the set point 	
setting overflow	\pm 1% of the controller
	range
Measurement time	0.5 s
Error detection in the measure	ement circuit:

- thermocouple, Pt100

measuring range exceeding

Control algorithm: - P. PD, PI, PID, ON-OFF with hysteresis

Setting range of controller parameters - See table 1

Kinds of outputs:

for control output:

relay without voltage
load 2 A/230 V
logic voltage

change-over contact

5 V voltage, 10 Ω resistance limiting the current (without isolation from the sensor side for alarm output)

for alarm output:

- relay without voltage

Output operation:

- reverse for heating - direct for cooling

Signalling:

- switching the main output on
- switching the main output off

Rated operating conditions:

85...253 V a.c. / d.c. - supply voltage - supply voltage frequency 40 440 Hz - ambient temperature 0...23...50°C -20...+70°C - storage temperature - relative air humiditv < 85% (without condensation) - external magnetic field < 400 A/m - preliminary warm-up time 30 min. - operating position anv - resistance of wires connecting the resistance thermometer with the controller <10 O/wire Consumption < 4 VA < 0.3 kg Weight **Overall dimensions** $96 \times 96 \times 65 \text{ mm}$ $91^{+0.6} \times 91^{+0.6}$ mm Panel cut-out

normally open contact (NOC) load capacity1 A/230 V,

Protection degree ensured by the 60529:	housiı	ng acc. to EN
from the frontal plate sidefrom terminal side	IP 40 IP 20	
Additional errors in rated operatin caused by: - compensation of the thermocouple reference junction temperature cha - changes of the RTD line resistance - change of ambient temperature	nge	ditions ≤ 2°C, ≤ 50% of the intrinsic error ≤ 100% of the intrinsic error /10 K.
Safety requirements acc. to EN 61 - isolation between circuit - installation category - pollution degree - maximal working voltage in relation - for the supply circuit - for input circuits - altitude above sea level	010-1: to ear	basic, III, 2, th: 300 V 50 V under 2000 m

Electromagnetic compatibility: - immunity acc. to EN 61000-6-2

- emission acc. to EN 61000-6-4

13. CONTROLLER EXECUTION CODES

The coding way is given in the table 6

		Table 6				
Temperature controller RE55 -		Х	Х	х	х	Х
Input:						
Pt100/1,3850	-50100°C	01				
	0100°C	02				
	0150°C	03				
	0250°C	04				
	0400°C	05				
	0600°C	06				
Fe-CuNi (J)	0250°C	07				
	0400°C	80				
	0600°C	09				
	0900°C	10				
NICI-NIAI (K)	0 900°C	12				
	0 1300°C	12				
PtRh10-Pt (S)	0 1600°C	14				
on order *	01000 0	00				
onorder		99				
Kinds of execution:						
on-off controller1						
PID controller						
controller configurable by push-buttons and with an alarm3						
Control output relay:						
relay1						
voltage 0/5V						
Version:						
standard 00						
custom-made						
Additional acceptance test requirements:						
without additional requirements						
with a quality inspection certificate						
acc. customer's requirements **						

*) - After agrement with the manufacturer

**) - The code will be established by the manufacturer

EXAMPLE OF ORDER

The code: RE55 02 3 1 00 8 means: RE55 - temperature controller of RE55 type 02 - input Pt100, range: 0...100°C 3 - execution: controller configurable by push-buttons and with an alarm 1 - control output: relay 00 - standard version 8 - without an additional guality certificate.

14. MAINTENANCE and GUARANTEE

The RE55 controller does not require any periodical maintenance.

In case of some incorrect controller operations:

1. After the dispatch date and in the period stated in the guarantee card

One should return the instrument to the Manufacturer's Quality Inspection Dept. If the instrument has been used in compliance with the instructions, the Manufacturer warrants to repair it free of charge.

The disassembling of the housing causes the cancellation of the granted guarantee.

2. After the guarantee period:

One should turn over the instrument to repair it in a certified service workshop.

We reserves the right to make changes in design and specifications of any products as engineering advances or necessity requires.

LUMEL

LUMEL S.A.

ul. Słubicka 4, 65-127 Zielona Góra, Poland tel.: +48 68 45 75 100, fax +48 68 45 75 508 www.lumel.com.pl

Informacja techniczna: tel.: (68) 45 75 140, 45 75 141, 45 75 142, 45 75 145, 45 75 146 e-mail: sprzedaz@lumel.com.pl

Realizacja zamówień: tel.: (68) 45 75 150, 45 75 151, 45 75 152, 45 75 153, 45 75 154, 45 75 155

Wzorcowanie: tel.: (68) 45 75 163 e-mail: laboratorium@lumel.com.pl

Technical support: tel.: (+48 68) 45 75 143, 45 75 141, 45 75 144, 45 75 140 e-mail: export@lumel.com.pl

Export department: tel.: (+48 68) 45 75 130, 45 75 132 e-mail: export@lumel.com.pl Calibration & Attestation: e-mail: laboratorium@lumel.com.pl

RE55-09A